Metabotypes of flavan-3-ol colonic metabolites after cranberry intake: elucidation and statistical approaches

Pedro Mena^{1,*,+}, Claudia Favari^{1,+}, Animesh Acharjee^{2,3,4}, Saisakul Chernbumroong^{2,3}, Letizia Bresciani¹, Claudio Curti⁵, Furio Brighenti¹, Christian Heiss⁶, Ana Rodriguez-Mateos⁷, Daniele Del Rio^{1,8}

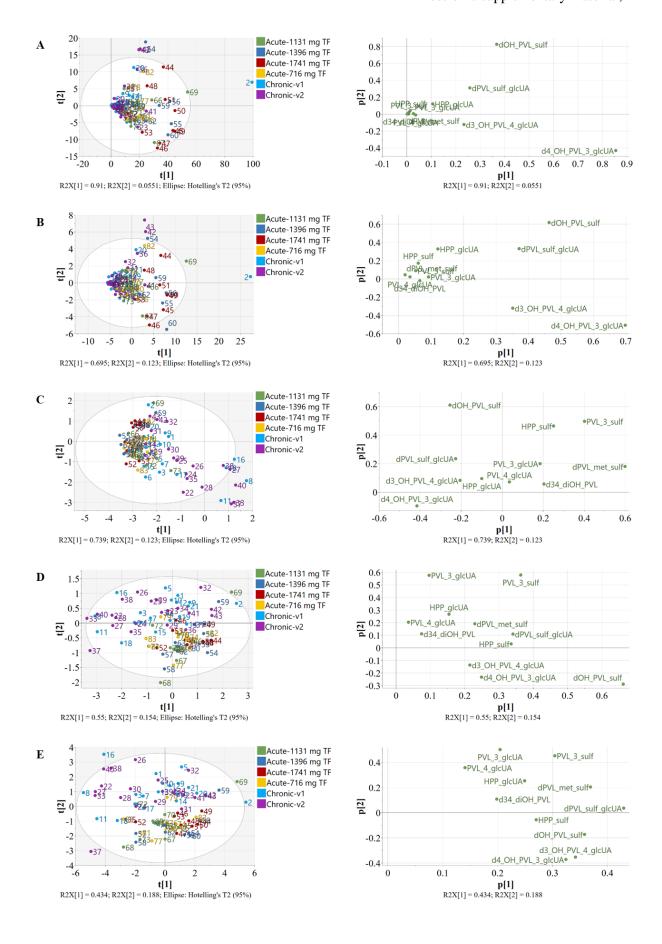
³ Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham, B15 2TT, UK

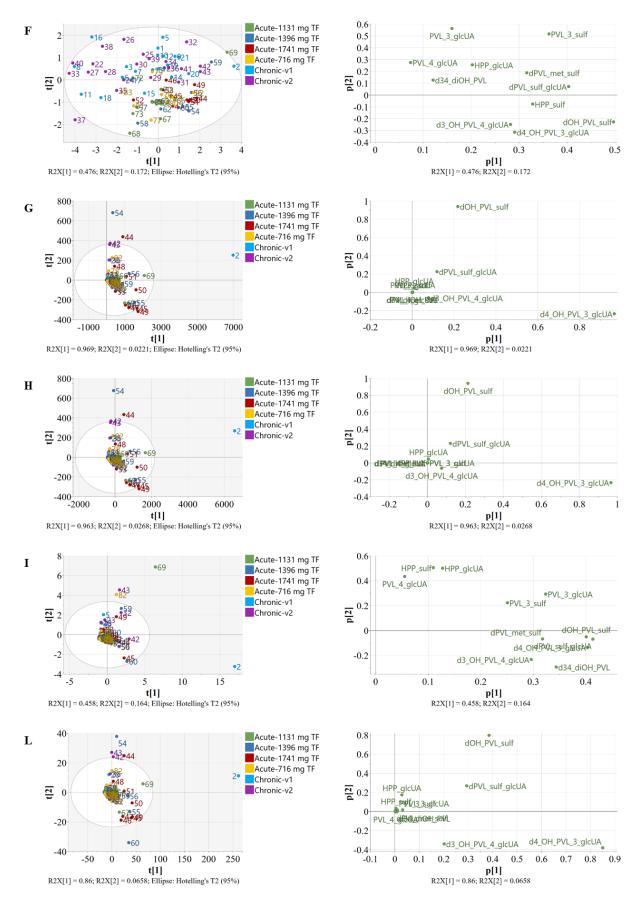
¹ Human Nutrition Unit, Department of Food & Drug, University of Parma, Parma, Italy

² College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, B15 2TT, UK

⁴ NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, UK

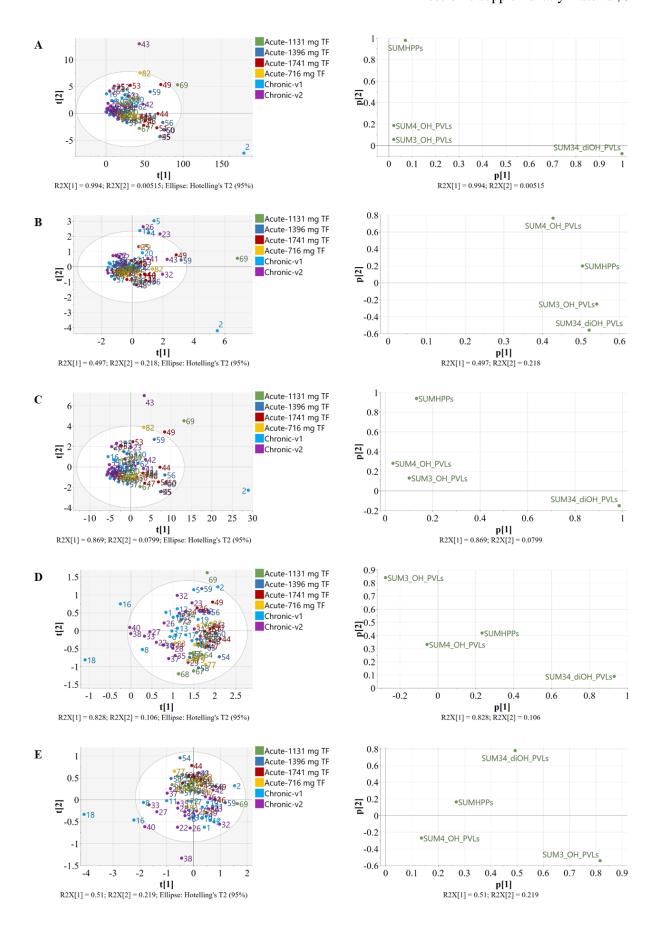
⁵ Department of Food & Drug, University of Parma, Parma, Italy

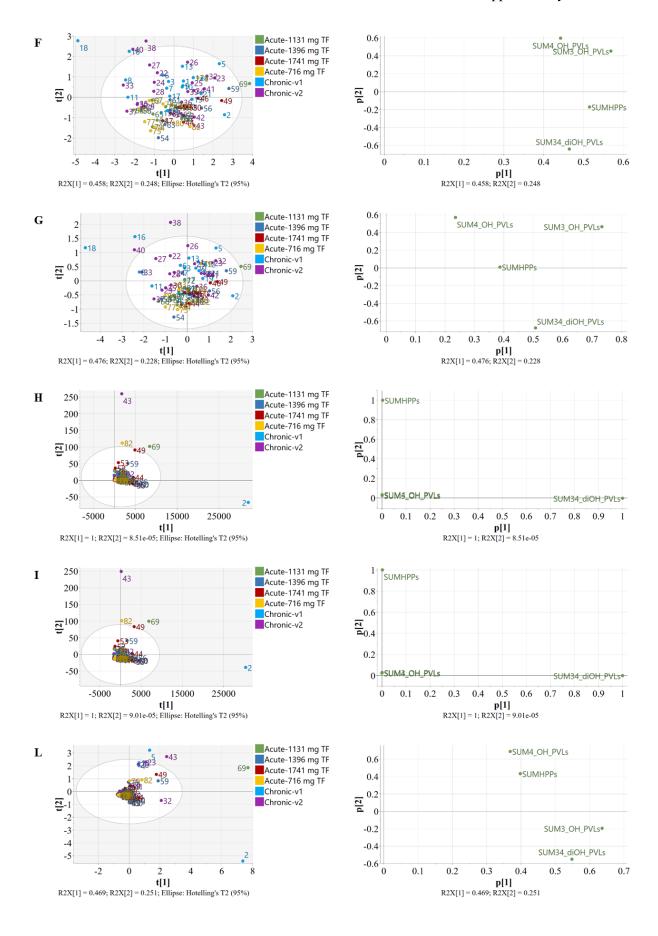

⁶ Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK


⁷ Department of Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK

⁸ School of Advanced Studies on Food and Nutrition, University of Parma, Parma, Italy

⁺ Equal contributors


^{*} Corresponding author: Via Volturno 39, 43125 Parma, Italy; Tel.: +39 0521-903841; E-mail: pedro.mena@unipr.it



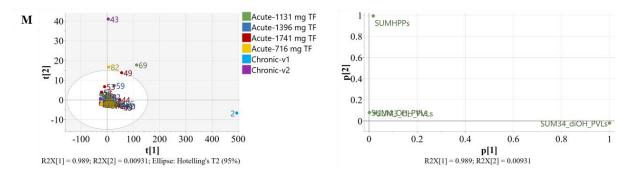
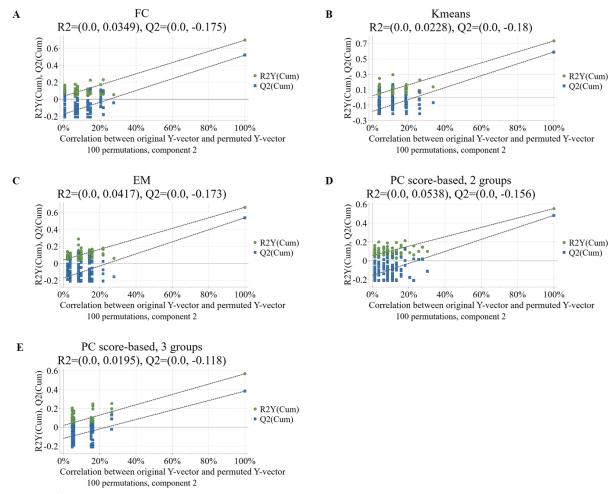
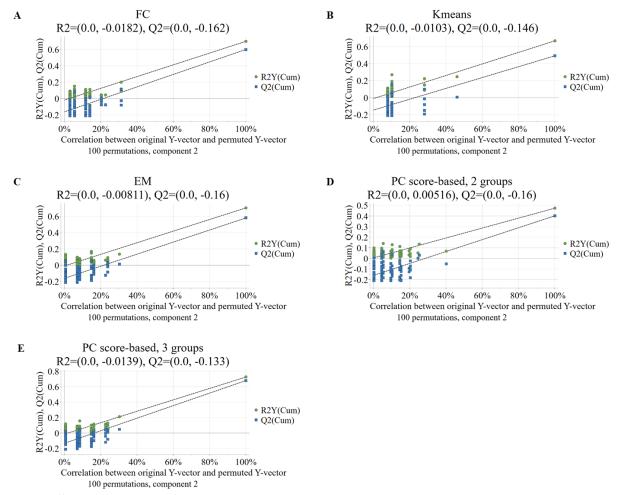


Figure S1A-L. PCA models (score and loading plots) for individual metabolites on: (**A**) non-transformed non-scaled data, (**B**) non-transformed centered and Pareto scaled data, (**C**) log-


transformed non-scaled data, (D) log-transformed centered data, (E) log-transformed autoscaled data, (F) log-transformed centered and Pareto scaled data, (G) power-transformed non-scaled data, (H) power-transformed centered data, (I) power-transformed autoscaled data, (L) power-transformed centered and Pareto scaled data.



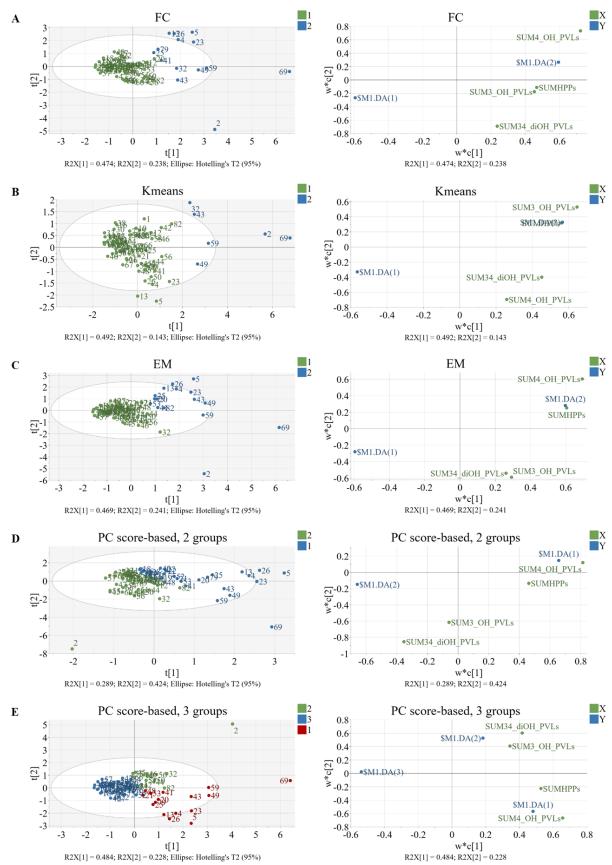

Figure S2A-M. PCA models (score and loading plots) for sums of metabolites belonging to the same aglycone compound on: (**A**) non-transformed non-scaled data, (**B**) non-transformed autoscaled data, (**C**) non-transformed centered and Pareto scaled data, (**D**) log-transformed non-scaled data, (**E**) log-transformed centered data, (**F**) log-transformed autoscaled data, (**G**) log-transformed centered and Pareto scaled data, (**H**) power-transformed non-scaled data, (**I**) power-transformed centered data, (**L**) power-transformed autoscaled data, (**M**) power-transformed centered and Pareto scaled data.

Figure S3A-E. Permutation plots of the PLS-DA models considering individual metabolites and the clusters obtained from different clustering methods: (**A**) final consensus – FC –, (**B**) k-means – Kmeans –, (**C**) expectation-maximization – EM – and PC score-based models for 2 (**D**) or 3 (**E**) groups.

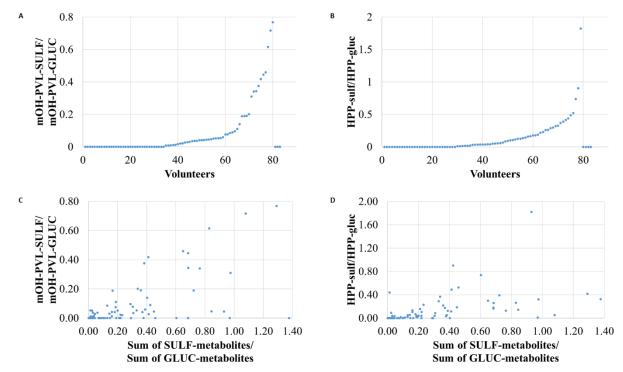


Figure S4A-E. Permutation plots of the PLS-DA models considering sums of metabolites belonging to the same aglycone family and the clusters obtained from different clustering methods: (**A**) final consensus – FC –, (**B**) k-means – Kmeans –, (**C**) expectation-maximization – EM – and PC score-based models for 2 (**D**) or 3 (**E**) groups.

Figure S5A-E. PLS-DA models (score and loading plots) considering sums of metabolites belonging to the same aglycone family and the clusters obtained from different clustering

methods: (A) final consensus – FC –, (B) k-means – Kmeans –, (C) expectation-maximization – EM – and PC score-based models for 2 (D) or 3 (E) groups.

Figure S6. Inter-individual variability in phase II metabolism illustrated by the sulfate (SULF)/glucuronide (GLUC) ratio of 5-(monohydroxyphenyl)-γ-valerolactones (monoOH-PVLs) (**A**) and 3-(hydroxyphenyl)propanoic acids (HPPs) (**B**) in urine samples. Relation between the ratio of the sums of all the sulfate or glucuronide metabolites values and the sulfate/glucuronide ratio of 5-(monohydroxyphenyl)-γ-valerolactones (**C**) or 3-(hydroxyphenyl)propanoic acids (**D**).

Table S1. Classification in groups according to every clustering method (Excel file)

Table S2. VIP values for individual metabolites and aglycone compounds of each PLS-DA model considering classes defined by each clustering method selected (final consensus – FC – , k-means – Kmeans –, expectation-maximization – EM – and PC score-based models for 2 or 3 groups).

Metabolites	VIP value				
	FC	Kmeans	EM	PC score- based, 2groups	PC score- based, 3groups
5-Phenyl-γ-valerolactone-3'-glucuronide	0.80	0.83	0.66	0.82	0.71
5-Phenyl-γ-valerolactone-3'-sulfate	0.78	0.78	0.63	0.79	0.96
5-Phenyl-γ-valerolactone-4'-glucuronide	0.31	0.31	1.36	1.52	0.69
5-(3',4'-Dihydroxyphenyl)-γ-valerolactone	1.01	1.05	0.59	1.36	1.22
5-(4'-Hydroxyphenyl)-γ-valerolactone-3'-glucuronide	1.03	1.00	0.62	1.02	1.03
5-(3'-Hydroxyphenyl)-γ-valerolactone-4'- glucuronide	1.04	0.94	0.68	0.94	1.11
5-(Hydroxyphenyl)-γ-valerolactone-sulfate (3',4' isomers)	1.34	1.37	0.85	0.74	1.15
5-Phenyl-γ-valerolactone-sulfate- glucuronide isomer (3',4')	1.11	1.09	0.70	0.29	0.96
5-Phenyl-γ-valerolactone-methoxy-sulfate isomer (3',4')	1.08	1.09	0.83	0.22	0.91
3-Phenylpropanoic acid sulfate	1.32	1.33	0.92	0.50	1.09
3-Phenylpropanoic acid glucuronide	0.76	0.77	2.09	1.63	1.03
3'OH-PVLs	0.88	1.26	0.70	0.35	0.7
4'OH-PVLs	1.42	0.65	1.34	1.56	1.25
3',4'diOH-PVLs	0.64	0.91	0.63	0.79	1.04
HPPs	0.90	1.08	1.14	0.90	0.87

3'OH-PVLs, sum of conjugates from the aglycone 5-(3'-hydroxyphenyl)-γ-valerolactone; 4'OH-PVLs, 5-(4'-hydroxyphenyl)-γ-valerolactone; 3',4'diOH-PVLs, 5-(3',4'-dihydroxyphenyl)-γ-valerolactone; HPPs, 3-(hydroxyphenyl)propanoic acid.